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What is “lonizing Radiation”?

lonizing radiation is produced by particles and photons which
ionize matter as they pass through and interact with it

— When ionizing radiation occurs in human tissue and DNA, it damages it

On Earth, we use ionizing radiation (e.g., x-rays and charged
particles) for medical imaging and cancer therapy

— When used in a controlled fashion and in safe doses, ionizing radiation
can be extremely beneficial to humans

In deep space, high levels of ionizing radiation continuously
from the cosmos but modulated by the Sun (galactic cosmic
rays = GCR) and episodically from the Sun (solar energetic
particles = SEP) bathe unprotected astronauts and robotic
satellites in mostly uncontrolled ways, thereby posing health
threats and risks



Cosmic Radiation: Fundamental
Properties and Challenges

High energy ionized particles
— Galactic Cosmic Rays (GCRs — mostly protons)
— Solar Energetic Particles (SEPs — mostly protons)
— Secondary particles (lunar surface and spacecraft structure — neutrons and
X-rays)
Heavier ions (He, C, O, Fe) more destructive ion-per-ion

Flux varies with the solar cycle

— More complex magnetic field structures at solar maximum limit access of
GCRs from galaxy into our inner solar system — unusual solar maximum
gives pause for what the next decades may bring (M. Lockwood recently
upped likelihood to 25% of Grand Minimum occurring in next 40 years...)

— SEPs more common near solar maximum

Difficult to shield against

— Penetrates thick materials easily
— Fragments from shielding material actually increase radiation dose s



Q: What are Galactic Cosmic Rays?
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Solar Particle Events

Solar protons are second source of ionizing radiation,
appearing as episodic bursts on top of GCR intensity

The solar particle events seen in latest cycle have been much lower in intensity
than the worst-case events from the last solar maximum, though have ramped

up in frequency since 2012
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Solar Particle Events

e Solar Energetic Particles
(SEPs) are energetic
particles accelerated by
processes associated with
a solar source

Sites of SEP Creation

Source of particle
radiation

e SEPs originate from:

— acceleration near a solar
flare site; and

— acceleration through
interactions with
interplanetary shock waves : Current

propagating away from the : sheet
Sun




But wait — there’s more!

* Van Allen Radiation Belts pose MORE radiation risks Discovered in 1958
by James van Allen with Explorer 1, the first US satellite

 NASA/LWS Van Allen Probes are discovering how the belts work and the

effects of ionizing radiation; seed population and acceleration
microphysics measured in situ are absolutely CRITICAL for

understanding
 Recent HEPPA meeting underscored growing understanding that medium

energy electron precipitation from Earth’s radiation belts important for
stratospheric climate variability (as important as solar UV changes)

Electron (left) and Proton (right)
Radiation Belt Models
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Van Allen Probe’s RBSP—ECT REPT instrument witnesses ultra
relativistic radiation belt destruction and reformation during storm
which occurred immediately after instrument turn-on

4.5 MeV e- flux observed by REPT-A and REPT-B (9/2 — 9/19)
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Dealing with Radiation: Human Spaceﬂlght

ISS: 1 REM (Roentgen Equivalent

Man, 1 REM ~ 1 CAT Scan)
— Scintillations
— Hardened shelter

Spacesuit on moon 50 REM
(Radiation sickness)

— Vomiting
— Fatigue
— Low blood cell counts

300 REM+ suddenly
— Fatal for 50% within 60 days

Human Chromosomes Showing DNA Damage From
Radiation - Photo Credit: Massey University
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damaged chromosome #2 In a
post-flight metaphase sample

Normal chromosome #2 and #4
in a post-flight metaphase sample



{c) Surface Charging
Space Environment Effects

hgle Event Upse
Mechanism
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Dealing with Radiation: Satellite Effects

High-Energy Ion Effects

D.N. Baker “How to Cope with
Space Weather,” Science, 297,
1486, 2002
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Seed Particles
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EMMREM has proved very successful at predicting SEP spectra and radiation dose
estimates at different distances in the inner heliosphere. Figures below show two recent

papers by which SEP time profiles, onset, and radiation estimates were successfully
predicted at Mars (Odyssey) and Ulysses located at 1.44 AU and 4.91 AU, respectively.
1 AU measurement from ACE, SoHO, and GOES.
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Predicting Solar Particle Events — PREDICCs

(P)redictions of radiation from (R)EleASE, (E)MMREM, and (D)ata
(I)ncorporating (C)RaTER, (C)oStEP, and other (S)EP measurements
(PREDICCs)

* EMMREM propagates energetic particles through the inner heliosphere to produce doses.

* Models compared with CRaTER data to improve forecasts of solar proton events, predictions of
radiation environment beyond low Earth orbit

GCR+SEP Doses for CRaTER
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System for Radiation
Environment
characterization (fluxes,
doses, dose equivalents
at Earth, Moon and
Mars) on hourly thru

yearly time frame

Example: Snapshots of
Current Yearly Doses at
Earth and Mars

Note: Exceeding 1-yr
Free Space Dose Limits
at Earth and Moon for <
1 g/cm? Al Shielding

See more at

Al 0.3 g/cm®, H
Al 1.0 giem®, H
Al 5.0 g/cm?, H
Al 10.0 g/cm?, H

-0 1 g/cm?
-0 1g.r'cm2
-0 1 g/cm?
-0 1 g/cm?
30 day limit
1 year limit

|

2011-10-1

2011-11-1

2011-12-1 |

Coordinated Universal Time (UTC)




* Approaching 1-
yr Free Space
Dose Limits at
Mars

H,O 1 glcm?

* See more at AI03 glem’.
Al 1.0g/em™,

' Al 5.0 g/cm?,

Al 10.0 g/cm?, H,O 1g/cm?
30 day limit

1 year limit

H,O 1g/cm

H,O 1 glcm?

2011-8-1
2011-9-1
2012-2-1
2012-3-1
2012-4-1
2012-5-1
2012-6-1

2012-1-1

2011-10-1
2011-11-1

Coordinated Universal Time (UTC)




Formation of
acceleration regions

Remote Observations Showing Events

from the Low Corona
osmxzmo 05:40:48 UT

(from shocks and A i

compressions) in the low
corona critical missing
piece in understanding
sudden SEP onsets.

AlA/211 image shows a
stage of the 2010 June Ly
13 coronal wave with 7= oo e &
The shock was formed =

iy Eruption—""""" ’
at ~1.2 Rs and R o7 4
observed here at 1.4 R A Whihe B
RS. ;-5’{ 'r’ ‘¢ S N P

KQzarov o aI 201L . »




Titov et al., 2013

* Insert modified version of the flux rope model by Titov
& Demoulin (1999) above the central polarity inversion
line of AR.

— AR + Flux Rope total unsigned flux of 7.5 x 1022 Mx
— Max radial-field strength of 1070 G at the photospheric level



C-SWEPA
simulation
of CME
release
from solar
corona and
coupled
into solar
wind

Colored
field lines
show
particularly
strong
distortions
of the
magnetic
field by the
explosive
plasma flow







Using coupled MAS-EPREM simulations, C-SWEPA links coronal conditions,
CMEs and associated shocks and transients to solar energetic particles, solar
wind conditions, and ultimately to time-dependent radiation exposure. Shown
are the results for particle differential energy fluxes at 1 AU from the event.

1.00 MeV
2.85 MeV
8.10 MeV
22.91 MeV
63.94 MeV
172.63 MeV
] 436.17 MeV
1000.00 MeV
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Resulting integrated dose and dose rate equivalents for Lens and Blood Forming
Organs (BFO) behind different levels of shielding. The results here show 10’s of cSv
even for well-shielded (10 g/cm? Al) BFO dose equivalents, indicating a radiation
hazard that approaches the 30-Day Limit (25 cSv) in roughly 2 hours
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Modeling Space Radiation = SEP + GCR

Validated models new tool for science prediction
(forecasting) and for engineering design (shielding)
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GCR dose rates in Earth's atmosphere. Dose rates computed behind 1.0 g/cm2
shielding. Dose rate at 36 km is ~34x larger than at 11 km in 2009 during extended
solar min. Ratio decreases during progression to solar max, falling to ~26 by 2013.
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Impacts THROUGOUT the Heliosphere: Here, There, & Everywhere!
GCR dose rates in Martian atmosphere (at B52 altitudes?) versus altitude as well
as quality factor <Q>. Unlike at Earth, dose equivalent differs significantly from

dose rate values, being ~4x greater at highest altitude and 3 at lowest.
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Summary

Radiation effects for humans in space present a serious health and
safety risk

lonizing radiation sources are multifold: galactic cosmic rays
(GCR), solar protons, and radiation belts —almost no where is
safel!

Deep solar minimum produced space-age high GCR — radiation
dose manageable for lunar missions, challenge for Mars mission

Sun’s activity is now at solar maximum and unremarkable

— Sun has thrown us more powerful events in last few years

— Some have posed significant radiation concerns, but manageable

— However, history shows that Sun is capable of BIGGER events of grave

concern even during grand lulls — stay tuned!

Measurements being used to improve predictive models which
can be used to:

— Improve radiation shielding technologies

— Improve NASA’s ability to forecast space radiation “climate” and space






Summary

« Worsening radiation environment from
anomalously low solar activity

— Cycle 23-24 Protracted Minimum
— Cycle 24 Mini Maximum

« Solar Maximum may be the time to perform long-
duration exploration missions

« Threat of large prompt solar events (e.g., July
2012 STEREO event, Russell et al., 2012)

* Increasingly Difficult Problem!
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DOSEN Neutron Measurement Concept‘

\ Recoil proton
energy spectrum
sensed by SSDs

Log1O(LET in D3 & D4, keV/micron)

1 125 15 175 2 225 25 275 7

Log10(LET in D1 & D2, keV/micron)

Aluminum DoSEN Enclosure = “Bioeffective” Shield (blocks <10 MeV p+)



B = ‘
o 2150 K : 6 2
2 S | ' e B
= ;100 / LR 4 %
& = 50 DM 2
o. U 1 1 | 1 0
1750 1770 1790
} o0 =T T T T T T T T T 1 8
S 2150 - . ‘, 2 ° =
n O : IS h B
o ~ 100 p A A X 4 %
2 X 50 ﬁ\’ RV L W Al 2 =
0. 1 LY A I 0
1840 1860 1880
co0 = T T T T TQF T T T TAT TTT T T T T g
B = L | . W '1 - <o
o 150 (-~ AR - IV || L | S m
% 3 100 1Mt ST RN %\ Sl 14 3
S N X o f N - =
A = 50 [y "3z -
1930 1950 1970 1990 2010

Year Goelzer et al., 2013



The remarkable evolving
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/data/run/goesPlots/bryn/SdaysEarth.plot
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U. Tennessee — EMMREM Accomplishments
NNX07AC14G - L. Townsend

Lead development of Scenario
and Transport code modules

Provided capability, in near-real-
time, to calculate radiation doses
and LET spectra for tissue and
electronics behind spacecraft
aluminum shields using
“looping” BRYNTRN code

Provided database of human
organ radiation exposures for Al
shielding thicknesses relevant to
vehicle and habitat designs
anywhere in free space or in
Mars atmosphere for GCR and
SEP spectra covering the entire
solar cycle

Calculations of doses, dose
equivalents and effective dose for
GCR and SEP protons at aircraft
altitudes in Earth’ s atmosphere
are completed. Heavy ion
component calculations are in
progress

Publications (author/coauthor)
- 10 journal articles
- 4 invited paper presentations

- 15 contributed paper
presentations

3 graduate students supported



Transition to Prediction &
Operations

« New ESMD/LRO
P red ICtlve M Od el (1) SEP Prediction Uses CRaTER observations

Development and existing models to
improve advanced
warning of solar proton
events

(2) Radiation Environment  Develops analysis and

Forecasting modeling tool combined with
CRaTER observations to
extend prediction of the
radiation environment well
beyond low Earth orbit, not
only at Moon but also
throughout the inner
heliosphere, including at
Earth, Moon, Mars,
Asteroids, and Comets
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Figure from Posner et al. (2009) demonstrating how relativistic electrons racing ahead of SEP ions provide an early
warning of the radiation hazard to follow up to one hour later.



Next Steps for EMMREM

* Transition to * Coupling between
Operations and MHD & EPREM
Predictive Models e Continued

* Development of development of
Comprehensive Risk PATH into a

Models predictive model



Modeling Large SEP Events with PATH
Code
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Worsening Radiation
Environment

N. A. Schwadron®,J. B. Blake4, A. W. Case>, C. Joyees s Kasper>+, §
Kellerz, J. Mazur?, N. Petre’, M. Quinn®%,.C. Smith*,S."Smith', H. E. Spence?,
L. Townsend>, 4. K. Wilson-, C. Zeitlin

Radiation

EXxploration & Exposure

Discovery
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Reductions in Magnetic Field & SSN

SSN (black)
Predicted (red)
OMNI (blue)

10Be (green)

Magnetic Flux Balance
(Schwadron et al.,, 2010)
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Continued Decay of Magnetic Flux in the
Dalton-like Minimum

Sunspots
[#/day]
o
o

O N M OO
[LU] [91018

2000 2010 2020
Year

Goelzer et al., ApJ, 2013



Slab Turbulence Model

. : —2006-2013
Modulation - Feb-Aug, 2013
POte ntlal 06 ey =-1.0811+1.8766x R=0.01431

— |Z€|QD(7) . 051 D x |B|’Y ‘;92&; //
BV 4 o4 872 ‘ﬁ"/’?/./
" — v v L 7 R
¢(,)_/7' dx?)m(fb‘) e 03 s
212 f “
| O(Tg/F _5B/B 3
® ox B*

0.55 06‘,065 07 0.75 0.8 0.85
log, (<V [B[>/<V>)



18 AbE ——

B CRaTER -+ |
= 16 F Sunspot Number  s—
(8 Prediction
o 147 > - i
é 12 Cycle 24 |
e
m ;
§ 10 |
S8
5 [ »
g ° 200 2
av! - w
a4 g
g =
o 9] 7 100 2
O e
3
0 : " 0 8
2000 2005 2010 2015 2020 -

Year Schwadron et al., 2014



3% Risk for Exposure Induced
Death

30 62 47
45 95 75
55 147 112

Managing Space Radiation Risk in the New Era of
Space Exploration

Committee on the Evaluation of Radiation Shielding for
Space Exploration, National Research Council 2008



Time Dose Eq. | Days to | Days to | Dose Eq. | Days to | Days to
(Cycle) Rate 3% REID | 3% REID | Rate 3% REID | 3% REID
<Q>=5.8 | (30 yr old | (30 yr old | <Q>=3.8 | (30 yr old | (30 yr old
(cSv/dy) | male) female) (cSv/dy) male) female)
1997.0 (Min 0.35 180 130 0.23 270 200
22-23)
2003.0 (Max 0.13 490 370 0.08 740 560
23)
2008.7 (Min 0.40 155 120 0.26 240 179
23-24)
2014.0 (Max 0.18 350 270 0.12 530 400
24)
2020 (Min 0.47 130 100 0.31 200 150
24-25)
Sehwadronetats 26+
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